
File: 640J 302701 . By:DS . Date:20:03:97 . Time:13:00 LOP8M. V8.0. Page 01:01
Codes: 4317 Signs: 2025 . Length: 50 pic 3 pts, 212 mm

Journal of Approximation Theory � AT3027

journal of approximation theory 89, 58�88 (1997)

Asymptotic Zero Distribution of
Laurent-Type Rational Functions*

N. Papamichael

Department of Mathematics and Statistics, University of Cyprus, P.O. Box 537, Nicosia, Cyprus

I. E. Pritsker -

Department of Mathematics, University of South Florida, 4202 East Fowler Avenue,
Tampa, Florida 33620, U.S.A.

and

E. B. Saff �

Institute for Constructive Mathematics, Department of Mathematics,
University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, U.S.A.

Communicated by V. Totik

Received May 15, 1995; accepted February 27, 1996

dedicated to a. w. goodman on the occasion of his 80th birthday

We study convergence and asymptotic zero distribution of sequences of rational
functions with fixed location of poles that approximate an analytic function in a
multiply connected domain. Although the study of zero distributions of polyno-
mials has a long history, analogous results for truncations of Laurent series have
been obtained only recently by Edrei (Michigan Math. J. 29 (1982), 43�57). We
obtain extensions of Edrei's results for more general sequences of Laurent-type
rational functions. It turns out that the limiting measure describing zero distribu-
tions is a linear convex combination of the harmonic measures at the poles of
rational functions, which arises as the solution to a minimum weighted energy
problem for a special weight. Applications of these results include the asymptotic
zero distribution of the best approximants to analytic functions in multiply con-
nected domains, Faber�Laurent polynomials, Laurent�Pade� approximants,
trigonometric polynomials, etc. � 1997 Academic Press

article no. AT963027

58
0021-9045�97 �25.00
Copyright � 1997 by Academic Press
All rights of reproduction in any form reserved.

* Research supported, in part, by a University of Cyprus research grant.
- Research done in partial fulfillment of a Ph.D. degree at the University of South Florida.
� Research supported, in part, by NSF Grant DMS 920�3659.



File: 640J 302702 . By:DS . Date:20:03:97 . Time:13:00 LOP8M. V8.0. Page 01:01
Codes: 2233 Signs: 1201 . Length: 45 pic 0 pts, 190 mm

1. INTRODUCTION

The limiting behavior of zeros of sequences of polynomials is a classical
subject that continues to receive much attention (see, e.g. [8, 11, 16])
because of its applications in function theory, numerical analysis and
approximation theory. Two of the fundamental results of the subject are
the theorems of Jentzsch [9] and Szego� [17] on the zero distribution of
partial sums of a power series. It is rather surprising that although the
study of zero distributions of power series sections has a long history, anal-
ogous results for truncations of Laurent series has been investigated only
relatively recently by Edrei [5] who, in particular, proved the following.

Theorem A. Let A=[z : r<|z|<R] be the exact annulus of convergence
for the Laurent series

f (z)= :
�

k=&�

ak zk,

where 0<r<1<R<�. Let 41=[mi]�
i=1 and 42=[ni]�

i=1 be two sequen-
ces of positive integers tending to �, such that

lim
i � �

|a&mi |
1�mi=r (1.1)

and

lim
i � �

|ani |
1�ni=

1
R

. (1.2)

Consider all the zeros of the truncation

Tni, mi (z)= :
ni

k=&mi

akzk

that lie in the angle %1�arg z<%2 (%1<%2�%1+2?). Then, as i � �, there
are

(1+ o(1))
%2&%1

2?
mi

of those zeros that have modulus <1 and

(1+o(1))
%2&%1

2?
ni

of them have modulus >1.

59ASYMPTOTIC ZERO DISTRIBUTION



File: 640J 302703 . By:DS . Date:20:03:97 . Time:13:00 LOP8M. V8.0. Page 01:01
Codes: 3141 Signs: 2580 . Length: 45 pic 0 pts, 190 mm

Moreover, for any given =>0, there are outside the annulus Re&=�|z|�
Re= at most o(ni) zeros of Tni , mi (z) of modulus >1 and there are at most
o(mi) zeros of modulus <1 outside re&=�|z|�re=.

This theorem is completely analogous to Szego� 's result for power series
[17]. It says that all but a negligible proportion of the zeros of the
Tni, mi (z)'s accumulate on the circles |z|=r and |z|=R, and that the
arguments of these zeros that are close to one of the circles, are equi-
distributed in the sense of Weyl.

In this paper we present various generalizations of Edrei's result to the
zero distribution of certain sequences of rational functions having fixed
location of poles and converging locally uniformly in finitely-connected
domains to an analytic function f (�0). As applications we describe the
limiting zero distribution of Laurent-type approximants. The main tools of
our investigation are the theories of weighted potentials and weighted
polynomial zero distributions developed in [15] and [11].

The paper is organized as follows. In Section 2 we state and discuss our
main results. Section 3 is devoted to applications such as zero distributions
of trigonometric approximants and Laurent�Pade� approximants. In Sec-
tion 4 we discuss the theory associated with a weighted potential problem
and, finally, in Section 5 we make use of this theory in order to prove the
theorems of Sections 2 and 3.

2. MAIN RESULTS

Let K be a bounded continuum (not a single point) whose complement
consists of a finite number of domains. We denote by C� the extended com-
plex plane, by [Gl]n

l=1 the set of bounded components of C� "K and by 0
the unbounded component. (It is clear that the Gl and 0 are simply
connected domains and that C� "K=(�n

l=1 Gl) _ 0.) Finally, for each
l=1, 2, ..., n we associate an arbitrary but fixed point al # Gl .

By the Riemann mapping theorem there exists a unique conformal
mapping ,l : Gl � D of Gl onto the open unit disk D, normalized by the
conditions ,l (al)=0 and ,$l (al)>0. The quantity Rl :=1�,$l (al) is called
the interior conformal radius of Gl with respect to al . Similarly, there exists
a conformal mapping 8 : 0 � D$ of the unbounded component 0 onto
the exterior of the unit circle D$=[z : |z|>1] normalized by 8(�)=�
and limz � � 8(z)�z=1�C, where C :=cap K is the logarithmic capacity
(transfinite diameter) of K (cf. [19]).

We shall keep the same notation ,l (z) for the extension of the conformal
mapping ,l : Gl � D onto the boundary �Gl in the sense of Carathe� odory's
theory of prime ends [6]. Thus, for each l=1, 2, ..., n, the mapping ,l
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is defined on the closure Gl , i.e. ,l : Gl � D� . Similarly, for the exterior
mapping we take 8 : 0� � D$.

For our study of limiting distributions we shall utilize the measures

+e(B) :=|(�, B, 0) (2.1)

and

+l (B) :=|(al , B, Gl), l=1, ..., n, (2.2)

for any Borel set B/C, where |(�, B, 0) is the harmonic measure of the
set B at the point � with respect to 0, and |(al , B, Gl) is the harmonic
measure of B at the point al with respect to the domain Gl (cf. [13, 19]).
We remark that +e is the same as the equilibrium measure for K in the
sense of logarithmic potential theory. Another convenient way to describe
the above harmonic measures is to interpret them as preimages of the
normalized arclength measure on the unit circle [z : |z|=1] under the
corresponding conformal mappings. That is,

|(�, B, 0)=m(8(B & �0)) (2.3)

and

|(al , B, Gl)=m(,l (B & �Gl)), l=1, ..., n, (2.4)

where dm=d%�2? on [z : |z|=1].
We recall that +e and +l , l=1, ..., n, are compactly supported unit Borel

measures, i.e.

&+e&=&+l &=1, l=1, ..., n,

and supp +e=�0, supp +l=�Gl [13].
The main goal of this paper is to study the limiting zero distribution

of sequences of rational functions that are identified by a multi-index
N=(k, m1 , m2 , ..., mn) and have the form:

RN(z)= :
k

j=0

tN
j z j+ :

n

l=1

:
ml

j=1

sN
l, j (z&al)

&j. (2.5)

In other words, RN(z) is a Laurent-type rational function whose poles are
located at the fixed points al # Gl , l=1, ..., n, and at � # 0. If tN

k and sN
l, ml

,
l=1, ..., n, are nonzero, then the total number of poles of RN(z) in the
extended complex plane C� is equal to

|N|=k+ :
n

l=1

ml , (2.6)
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which is the norm of the multi-index N. We also note that, in this case,

RN(z)=
tN

k PN(z)
>n

l=1 (z&al)
ml

, (2.7)

where PN(z) is a monic polynomial of degree |N| whose zeros coincide with
those of RN(z). Next we introduce the normalized counting measure in the
zeros of RN(z):

&N :=
1

|N|
:

PN (zj)=0

$zj , (2.8)

where $z is the unit point mass at z and where all zeros are counted according
to their multiplicities.

The results of this paper on zero distributions are all stated in terms of
the weak* convergence of measures. We say that a sequence of Borel
measures [+n]�

n=1 converges to the measure +, as n � �, in the weak*
topology if

lim
n � � | f d+n=| f d+

for any continuous function f on C having compact support.
Throughout the paper we assume that k=k(i), m1=m1(i), ...,

mn=mn(i), N=N(i), for some increasing sequence 4 of integers i, and that
k(i) � �, ml (i) � �, l=1, ..., n, as i � �, i # 4. Furthermore, we assume
that the following limits exist:

lim
|N| � �

ml

|N|
= lim

i # 4
i � �

ml (i)
|N(i)|

=: :l l=1, ..., n. (2.9)

This normalization means that we deal with so-called ``ray sequences'' of
rational functions. Clearly,

:l�0, l=1, ..., n,

lim
i # 4

i � �

k(i)
|N(i)|

=1& :
n

l=1

:l ,

and

:
n

l=1

:l�1.
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Before stating our results in their full generality, it is convenient to
consider the special case where K is the closure of an annular region A
bounded by two Jordan curves, with one curve interior to the other, so
that C� "K has only one bounded component which we denote by G1 .
Assume that a1=0 # G1 and consider the weak* limit of the normalized
counting measures &(k, m) in the zeros of Laurent-type rational functions of
the form

R(k, m)(z)= :
k

j=0

tk, m
j z j+ :

m

j=1

sk, m
j z& j, (2.10)

where k=k(i), m=m(i). Also, in accordance with (2.9), we assume the
existence of the limit

lim
k+m � �

m
k+m

= lim
i # 4

i � �

m(i)
k(i)+m(i)

=: : (2.11)

and that k(i) � �, m(i) � �.
The following theorem is a special case of Theorem 2.2 below.

Theorem 2.1. Suppose that the sequence [R(k, m)(z)]i # 4 defined by
(2.10) converges locally uniformly in a bounded annular region A to an
analytic function that is not identically zero. Assume further that (2.11) holds
and hat

lim
i # 4

i � �
|tk, m

k | 1�k=
1
C

, (2.12)

lim
i # 4

i � �
|sk, m

m | 1�m=R1 , (2.13)

where C :=cap A� and R1 is the inner conformal radius of G1 with respect to
the origin. Then

&(k, m) *� +w :=(1&:) +e+:+1 , as i � �, i # 4, (2.14)

where, from (2.1), (2.2),

+e=|(�, } , 0) and +1=|(0, } , G1).

We remark that the limit measure +w defined in (2.14) is, in fact, the
equilibrium measure for a weighted potential problem corresponding to a
special weight w (see Section 4).
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The ``not identically zero function'' assumption is essential in
Theorem 2.1. To show this, we consider the sequence

R(n, n)=zn&
1

2nzn , n=1, 2, ...,

convergent to f#0 locally uniformly in A :=[z : 1�2<|z|<1] as n � �.
This sequence satisfies conditions (2.12) and (2.13) as well as (2.11) with
:=1�2. However, R(n, n) has all zeros on [z : |z|=1�- 2]. In contrast, if we
consider the modified sequence [R(n, n)+1]�

n=1 , then all the conditions of
Theorem 2.1 hold and this sequence of rationals has one half of its zeros
accumulating on |z|=1 and the other half of its zeros accumulating on
|z|=1�2 in agreement with Theorem 2.1.

Some examples of Laurent-type rational approximants satisfying the
conditions of Theorem 2.1 are given in Section 3. We also mention that it
is possible to prove a result on the zero distribution of the partial sums of
Faber-Laurent series to a function analytic in a doubly connected domain
[18] via an application of Theorem 2.1. For the details see [14].

As an immediate corollary of Theorem 2.1 we obtain Edrei's result of
Theorem A. Indeed, if A=[z : 0<r<|z|<R<�] is the exact annulus of
convergence for the Laurent series

f (z)= :
�

k=&�

ak zk,

then the truncations

Tni, mi (z)= :
ni

k=&mi

akzk

converge locally uniformly in A to f (z)�0, as i � �. Also, we assume
without loss of generality that the limit

: := lim
i � �

mi

ni+mi

exists (otherwise we can apply our results to a subsequence, for which this
limit does exist). Then conditions (2.12) and (2.13) of Theorem 2.1 are
satisfied in view of (1.1) and (1.2). Thus, Theorem 2.1 gives

&N *� (1&:) +e+:+1 (2.15)

in the weak* sense as |N|=ni+mi � �, or as i � �. Since in this case +e

coincides with the normalized arclength measure on [z : |z|=R] and +1

coincides with the normalized arclength measure on [z : |z|=r], the result
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(2.15) gives in a more compact manner (using weak* convergence) the
conclusions of Theorem 1.1.

Theorem 2.1 is a special case of the following more general result.

Theorem 2.2. Let K be the closure of a multiply connected Jordan
domain, i.e. �0 and �Gl , l=1, ..., n, are Jordan curves without common
points. Suppose that the sequence [RN(z)]i # 4 (cf. (2.5)) converges locally
uniformly in the interior K% of K to f (z)(�0) and (2.9) holds.

If

(i) lim
i # 4

i � �
|tN

k | 1�k=
1
C

and

(ii) lim
i # 4

i � �
|sN

l, ml
| 1�ml=Rl , l=1, ..., n,

then the normalized zero counting measures &N for RN satisfy
(iii) &N *� +w in the weak* sense as i � �, i # 4, where

+w :=\1& :
n

l=1

:l+ +e+ :
n

l=1

:l +l . (2.16)

Conversely, suppose that :l>0, l=1, ..., n, with �n
l=1 :l {1. If each al has

some neighborhood free of zeros of [RN(z)]i # 4 , then (iii) implies (i) and (ii).

Our next result is a ``one-sided'' version of Theorem 2.2. To state it we
recall that the logarithmic potential of a compactly supported Borel
measure + is defined by

U+(z) :=| log
1

|z&t|
d+(t).

Suppose that G is an open bounded set and supp +/G. Then a measure
+̂ supported on �G is called the balayage of + to the boundary of G if
&+̂&=&+&, the potential U +̂ is bounded on �G and

U+̂(z)=U+(z) q.e. on �G

(see Chapter IV of [10]). By q.e. (quasi-everywhere) we mean that the
above equality holds for all z # �G with the possible exception of a set of
zero logarithmic capacity.
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Theorem 2.3. If in Theorem 2.2 we assume that condition (i) holds (but
not necessarily (ii)), then for any weak* limit & of the measures &N , as
i � �, i # 4, we have

U&(z)=U+w(z), z � G� := .
n

l=1

Gl (2.17)

and

& | C"G� =+w | C"G� =\1& :
n

l=1

:l+ +e , (2.18)

where +w is given by (2.16). Furthermore,

&̂N *� +w , as i � �, i # 4, (2.19)

where &̂N denotes the measure obtained by balayage of the part of &N supported
in G :=�n

l=1 Gl to �G=�n
l=1 �Gl . (Here the part of &N supported outside of

G is kept fixed).

Remark 2.4. Theorem 1 in [5] follows from Theorem 2.2 applied to
the partial sums of Laurent series.

Remark 2.5. In Theorem 2.3 we actually require only that k(i) � � as
i � �, i # 4, so that ml (i), l=1, ..., n, may be bounded. Thus, if we consider
a sequence of polynomials [PN(z)] that converges locally uniformly in K%
to a nonzero analytic function such that (i) is satisfied, then we have :l=0,
l=1, ..., n, and &N(B) � 0, as i � �, for any compact B/C� "0� . The last
statement follows from Hurwitz's theorem and the maximum modulus
principle, according to which [PN(z)] converges locally uniformly in C"0� .
Thus, we obtain from (2.19) of Theorem 2.3 that

&N *� +e as i � �, i # 4.

It follows that in this case Theorem 2.3 reduces to certain results of Blatt,
Saff and Simkani [2] on the zero distribution of polynomials.

It is of some interest to consider the analog of Theorem 2.2 for a set K

with empty interior. In this case the condition of convergence for the
sequence of rational functions can be replaced by a weaker one. Namely,
we have the following.

Theorem 2.6. Let K be an arbitrary bounded continuum (not a single
point) with empty interior and suppose that C� "K consists of a finite number
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of components 0, G1 , ..., Gn . Assume that for the rational functions RN of
(2.5) we have (2.9) and

lim
i # 4

i � �
&RN &1�|N|

K =1. (2.20)

Then conditions (i) and (ii) of Theorem 2.2 imply (iii).

By the norm in (2.20) we mean the uniform norm, i.e.,

& f &K := sup
z # K

| f (z)|.

The last theorem can be applied, for example, in case when K is a single
Jordan curve. This provides an extension of Edrei's result for Laurent series
to the situation when the annulus of convergence A degenerates to the unit
circle, i.e. with K=T=[z : |z|=1]. We present this result in Theorem 3.1

We remark that it is possible to further relax the geometric conditions
imposed on the set K in the theorems of this section. For example, one
could allow every component of C� "K to be a finitely connected domain,
where we assume, as before, that the number of components is finite. The
analogues of our result in this case are straightforward. Another generaliza-
tion is to allow finitely many fixed poles in every component of C� "K

instead of just one.

3. APPLICATIONS

3.1. Zeros of Fourier Sections

Consider the Fourier expansion

f (z)= :
�

k=&�

ak eik%= :
�

k=&�

akzk (3.1)

for a function f # L2(T), where T=[z : |z|=1]. Equality in (3.1) is with
respect to L2 norm.

Theorem 3.1. Let f # L2(T). Suppose that for the representation (3.1),
the functions

g(z)= :
�

k=0

akzk (3.2)
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(analytic in |z|<1) and

h(z)= :
&1

k=&�

akzk (3.3)

(analytic in |z|>1) cannot be analytically continued to an open set contain-
ing the unit circle. Then there exist two sequences of positive integers [ni]�

i=1

and [mi]�
i=1 such that for the normalized counting measure &ni+mi in the

zeros of the truncation

Tni , mi (z)= :
ni

k=&mi

ak zk, (3.4)

we have

&ni+mi
*� | as i � �,

where | is the normalized arclength measure on T, i.e. d|=d%�2?.

We give a sketch of proof here. Since both functions g(z) and h(z) have
singularities on T, there exist two subsequences of positive integers [ni]�

i=1

and [mi]�
i=1 such that

lim
i � �

|ani |
1�ni=1 and lim

i � �
|a&mi |

1�mi=1. (3.5)

From the Ho� lder inequality we obtain

&Tni , mi &2�- 2? &Tni , mi &��2? - n+m &Tni , mi &2 , (3.6)

where &Tni , mi &�=maxz # T |Tni , mi (z)|. It follows that

lim
i � �

&Tni , mi &
1�(ni+mi)
� = lim

i � �
&Tni , mi &

1�(ni+mi)
2 =1, (3.7)

because limi � � &Tni , mi &2=& f &2 {0.
Theorem 3.1 is now a consequence of Theorem 2.6 because the measures

+e and +1 of Theorem 2.6 are given in this case by +e=+1=|; thus for any
[ni]�

i=1 and [mi]�
i=1 , satisfying (3.5) such that

lim
i � �

mi

ni+mi
=:,

we obtain

+w=(1&:) +e+:+1=(1&:) |+:|=|.
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3.2. Zeros of Laurent�Pade� Approximants with the Fixed Denominator
Degree
For the function

f (z)= :
�

k=&�

ck zk

analytic in A=[z : r<|z|<R] we consider its additive splitting

f (z)= f +(z)+ f &(z), z # A, (3.8)

where

f +(z)=
c0

2
+ :

�

k=1

ck zk

is analytic in [z : |z|<R] and

f &(z)=
c0

2
+ :

&1

k=&�

ckzk

is analytic in [z : |z|>r].
Following [7], we introduce Laurent�Pade� approximants of order

(m, n). It is enough to consider the case m�n for our purposes. This sim-
plifies the definition of Laurent�Pade� approximant of type (m, n) to the
sum of classical Pade� approximants of type (m, n) to f +(z) and f &(z)
about 0 and � respectively.

Let

r+
m, n(z)=

p+
m, n(z)

q+
m, n(z)

be the classical Pade� approximant of type (m, n) to the function f +(z)
about 0, i.e.

f +(z) q+
m, n(z)& p+

m, n(z)=O(zm+n+1).

We use the notations

p+
m, n(z)= :

m

j=0

a+, ( j)
m, n z j

for the Pade� numerator of type (m, n) and

q+
m, n(z)= :

n

j=0

b+, ( j)
m, n z j

for the (normalized) Pade� denominator with b+, (0)
m, n =1.
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We consider next the Pade� approximant of type (m, n) to f &(z) about
�, i.e.

r&
m, n(z)=

p&
m, n(1�z)

q&
m, n(1�z)

,

where

p&
m, n \1

z+= :
m

j=0

a&, ( j)
m, n \1

z+
j

and

q&
m, n \1

z+= :
n

j=0

b&, ( j)
m, n \1

z+
j

with b&, (0)
m, n =1. For p&

m, n(1�z) and q&
m, n(1�z) we have

f &(z) q&
m, n \1

z+& p&
m, n \1

z+=O \ 1
zm+n+1+ .

The Laurent�Pade� approximant of type (m, n) to f (z) is then defined by

rm, n(z) :=r+
m, n(z)+r&

m, n(z)=
pm, n(z)
qm, n(z)

,

where

pm, n(z) :=p+
m, n(z) q&

m, n(1�z)+ p&
m, n(1�z) q+

m, n(z) (3.9)

is a Laurent polynomial of degree at most m and

qm, n(z) :=q+
m, n(z) q&

m, n(1�z)

is a Laurent polynomial of degree at most n. We note that

pm, n(z)=a+, (m)
m, n b&, (0)

m, n zm+ } } } +a&, (m)
m, n b+, (0)

m, n

1
zm

or, since b+, (0)
m, n =b&, (0)

m, n =1,

pm, n(z)=a+, (m)
m, n zm+ } } } +a&, (m)

m, n

1
zm . (3.10)
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Since the zeros of rm, n(z) coincide with those of the numerator pm, n(z),
as given by (3.10), it suffices to study the limiting behavior of zeros of this
Laurent polynomial or Laurent-type rational function. Theorem 2.1 gives
the necessary tools for such a study.

Suppose that f (z) has a meromorphic continuation to the annulus
An :=[z : rn<|z|<Rn] such that this continuation (which we still denote
by f (z)) has exactly n poles, counted according to multiplicities, in
[z : rn<|z|�r] and n poles in [z : R�|z|<Rn]. Thus, the total number of
poles of f (z) in An is 2n, where n is a fixed positive integer. We assume that
An is the largest annulus with the above properties and that the conditions
Rn<�, rn>0 hold.

Theorem 3.2. Under the above assumptions of f (z), there exist two sub-
sequences 41 and 42 of indices such that the normalized counting measure in
zeros of Laurent�Pade� approximants of type (m, n) to f (z), i.e.,

&m=
1

2m
:

rm, n(zj)=0

$zj ,

has weak* limits satisfying

&m | |z| �(Rn+rn)�2 *� +1 as m � �, m # 41 , (3.11)

where

d+1=
1
2

d%
2?

on |z|=Rn ,

and

&m | |z| �(Rn+rn)�2 *� +2 as m � �, m # 42 , (3.12)

where

d+2=
1
2

d%
2?

on |z|=rn .

This means that the weak* limit of restrictions of &m , m # 41 , on
[z : |z|�(Rn+rn)�2], as m � �, coincides with one half of the normalized
Lebesgue measure on |z|=Rn . On the other hand, when m � �, m # 42 ,
the weak* limit of the restrictions of &m on [z : |z|�(Rn+rn)�2] is equal
to one half of the normalized Lebesgue measure on |z|=rn .

The results of Theorem 3.2 are analogues of results in [4] for the zero
distribution of classical Pade� approximants with fixed denominator degree.
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4. POTENTIAL THEORETIC BACKGROUND

In this section we discuss the theory associated with some weighted
potential problems which plays a crucial role in the derivation of our
results. In particular, we show that the measure +w defined in (2.16) arises
in a natural way as the extremal measure for a weighted energy problem.

Let K/C be an arbitrary compact set of positive capacity. For a Borel
measure & with compact supports S& /C"K such that &&&=:, 0�:�1,
we consider weight function

w(z) :={eU&(z),
0,

z # K,
z � K,

(4.1)

where U& is the logarithmic potential of &. Note, that w(z) is continuous as
a function defined on K and

w(z)=e&Q(z), z # K, (4.2)

where

Q(z) := &U&(z), z # K. (4.3)

Let M(K) denote the class of all Borel measures + with total mass
&+&=1 supported on K, and consider the following weighted energy
problem:

``For the weighted energy integral

Iw(+) :=|| log
1

|z&t| w(z) w(t)
d+(z) d+(t), (4.4)

find

Vw := inf
+ # M(K)

Iw(+) (4.5)

and identify the extremal measure +w # M(K) for which the inf in (4.5) is
attained.''

We note that w(z) is a continuous admissible weight on K in the sense
of [12]. Therefore the following is known (cf. Theorem 3.1 of [12] and
Section I.1 of [15]):
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Theorem 4.1. For w as defined in (4.1):

(a) Vw is finite;

(b) _ a unique element +w # M(K) such that

Iw(+w)=Vw

and the logarithmic energy of +w is finite, i.e.

&�<|| log
1

|z&t|
d+w(z) d+w(t)<+�;

(c) U+w(z)+Q(z)�Fw , for q.e. z # K, where

U+w(z) :=| log
1

|z&t|
d+w(t)

and

Fw :=Vw&| Q(t) d+w(t);

(d) U+w(z)+Q(z)=Fw , for q.e. z # supp +w .

In fact, it is proved in [15] that properties (c) and (d) characterize the
extremal measure: If a compactly supported measure _ # M(K) has finite
logarithmic energy and

U _(z)+Q(z)=F q.e. on supp _, (4.6)

U _(z)+Q(z)�F q.e. on K, (4.7)

then _=+w and F=Fw . Using this result we can explicitly find the
extremal measure for the weight w(z) given by (4.1).

Theorem 4.2. Let K/C be an arbitrary compact set of positive
capacity and let & be a Borel measure with compact support S& /C"K such
that &&&=:, 0�:�1. Then the solution of the weighted energy problem for
w(z) as defined by (4.1), is given by

+w=(1&:) +K +&̂, (4.8)

where +K is the classical equilibrium distribution for K and &̂ is the
balayage of & to K.
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Furthermore,

Fw=(1&:) log
1
C

+|
0

g0(t, �) d&(t), (4.9)

where C :=cap K and g0(t, �) is the Green function of the unbounded com-
ponent 0 of C� "K with pole at �.

Remark. For the notions of the equilibrium distribution, balayage and
Green function see Chapter II and IV of [10].

Proof. Recall, that for the weight w(z) given by (4.1)

Q(z)=&U&(z), z # K.

Section IV.1 of [10] yields the existence of the balayage &̂ which is the
unique measure with supp &̂/�K and &&̂&=&&&=:, such that

U&̂(z)=U&(z)+| g0(t, �) d&(t) for q.e. z # K, (4.10)

and

U&̂(z)�U&(z)+| g0(t, �) d&(t) \z # C. (4.11)

Since U&(z) is uniformly bounded on supp &̂/�K, the last inequality
implies by integration with respect to &̂ that &̂ has finite logarithmic energy.
This means that + :=(1&:) + K +&̂ also has finite logarithmic energy.
Next, we recall from Frostman's theorem ([19, Section III.3]),

U+K(z)=log
1
C

q.e. on K.

Then, it follows from (4.10) that q.e. on K

U+(z)+Q(z)=(1&:) U+K(z)+U &̂(z)&U&(z)

=(1&:) log
1
C

+| g0(t, �) d&(t).

It is clear that supp +/�K/K and &+&=(1&:) &+K &+&&̂&=1&:+
:=1. Thus, by (4.6) and (4.7), + must be the weighted equilibrium dis-
tribution with

Fw=(1&:) log
1
C

+| g0(t, �) d&(t),

i.e. +=+w . K
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Let K be a bounded continuum whose complement consists of a finite
number of domains and, with the notation introduced in Section 2, con-
sider the weight function

w(z)={`
n

j=1

|z&aj |
&:j, z # K,

(4.12)
0, z # C"K,

where, as before, :j�0, j=1, ..., n, �n
j=1 :j�1, and for each j=1, 2, ..., n,

aj is a fixed point in the bounded component Gj of C"K. Then w(z) is con-
tinuous as a function defined on K and

w(z)=e&Q(z), z # K, (4.13)

where

Q(z) := :
n

j=1

:j log |z&aj |. (4.14)

Corollary 4.3. The solution of the minimal weighted energy problem
for

w(z)= `
n

l=1

|z&al |
&:l, z # K,

is given by the measure

+w=\1& :
n

l=1

:l + +e+ :
n

l=1

:l+l . (4.15)

Furthermore,

Fw=\1& :
n

l=1

:l + log
1
C

, (4.16)

where C is the logarithmic capacity of K.

Proof. For the weight w(z) defined by (4.12) we have that

Q(z)=&U&(z), z # K,

for the measure

&= :
n

l=1

:l$al ,
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where $t is the Dirac $-measure at the point t and

: :=&&&= :
n

l=1

:l .

It is well known (cf. [10, p. 222]) that the balayage of the unit point mass
$al supported in al to �K is just +l=|(al , } , Gl), l=1, ..., n. Therefore,

&̂= :
n

l=1

:l+l

and so by Theorem 4.2,

+w=\1& :
n

l=1

:l + +e+ :
n

l=1

:l+l .

Since in this case � g0(t, �) d&(t)=0, formula (4.9) yields

Fw=\1& :
n

l=1

:l + log
1
C

,

which completes the proof. K

5. PROOFS

5.1. Lemmas

Before we proceed with the proofs of our main results we need several
important lemmas. The first of these is an analogue of the well-known
Bernstein�Walsh lemma for rational functions RN(z).

Assume that E is a bounded continuum whose complement consists of a
finite number of domains. Let us denote the bounded components of C� "E
by [G� l]n

l=1 and the unbounded component by 0� . Consider the conformal
mappings ,� l : G� l � D=[w : |w|<1] and 8� : 0� � D$=[w : |w|>1] with
normalizations respectively ,� l (al)=0, ,� $l (al)>0, where al # G� , l=1, ..., n,
and 8� (�)=�, 8� $(�)>0.

Lemma 5.1. For the rational function RN(z) defined by (2.5) we have
that

|RN(z)|�&RN &�0� |8� (z)|k, z # 0� (5.1)
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and

|RN(z)|�
&RN &�G� l

|,� l (z)|ml
, z # G� l , l=1, ..., n, (5.2)

where the norms are Chebyshev norms.

Proof. The proof is standard: we consider the function h(z)=
RN(z)�[8� (z)]k and observe that it is analytic everywhere in 0� . Thus, by
the maximum modulus principle, we have that

|RN(z)|
|8� (z)| k �"RN

8� k"�0�
=&RN&�0� , z # 0� .

This gives (5.1).
Similarly, by considering the function h(z)=RN(z)[,� l (z)]ml, which is

analytic in G� l , we obtain in the same way that

|RN(z)| } |,� l (z)|ml�&RN ,� ml
l &�G� l=&RN&�G� l , z # G� l , l=1, ..., n,

and (5.2) follows. K

As a consequence, we have the following:

Lemma 5.2. Let the continuum K satisfy the assumptions of
Theorem 2.2, and assume that the sequence [RN(z)]i # 4 converges locally
uniformly in K% to f (z)(�0). Then

lim
i # 4

i � �
&RN &1�k

�0 =1 (5.3)

and

lim
i # 4

i � �
&RN &1�ml

�Gl
=1, l=1, ..., n. (5.4)

Proof. Since K is the closure of a finitely connected Jordan domain
K%, an argument similar to that of [20, p. 96], shows that for any R>1
we can find a continuum E/K% such that �0/ER , where ER denotes the
continuum bounded by the level curve |8(z)|=R and E. (It is enough to
take E to be a Jordan curve sufficiently close to �0.) Then, by the locally
uniform convergence of RN(z) to f (z)�0 in K%, we have that

&RN&E�& f&RN &E+& f &E�2 & f &E
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for i sufficiently large. Thus, from (5.1),

&RN& |8� (z)|=R�2 & f &E Rk,

and, by the maximum modulus principle, this yields

lim sup
i � �

&RN&1�k
�0 �lim sup

i � �
&RN&1�k

ER
�R.

Hence, on letting R � 1 we get that

lim sup
i � �

&RN&1�k
�0 �1. (5.5)

Similarly, by taking E to be a Jordan curve close to �Gl , and using (5.2)
we find that

&RN& |,� l(z)|=1�R�2 & f &E Rml, l=1, ..., n.

Hence,

lim sup
i � �

&RN&1�ml
�Gl

�1, l=1, ..., n. (5.6)

If we assume that lim infi � � &RN&1�k
�0 =q<1, then we can conclude that

there exists a subsequence [RN]i # 4$/4 uniformly convergent to zero on
�0. It then follows from (5.1), with E=�0, that this convergence takes
place in the strip between �0 and the level curve defined by |8(z)|=R for
some R>1, i.e.

lim
i � �
i # 4$

|RN(z)| 1�k� lim
i � �
i # 4$

&RN&1�k
�0 } R

�qR, z # [z # t : 1�|8(t)|�R].

Thus, we only need to take R such that qR<1. But this implies the exis-
tence of analytic continuation of f (z) through �0, which vanishes identi-
cally in the strip. Thus, f (z) must vanish everywhere, contradicting our
assumption that f (z)�0. This proves (5.3).

The same argument can be applied in the case of �Gl , l=1, ..., n, to
prove that

lim inf
i � �

&RN&1�ml
�Gl

<1

is impossible for any l=1, ..., n, thus yielding (5.4). K
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Lemma 5.3. For the leading coefficients of RN(z) defined by (2.5) we
have that

|tN
k |�

1
Ck &RN&�0 , C=cap K, (5.7)

and

|sN
l, ml

|�Rml
l &RN&�Gl , (5.8)

l=1, ..., n.

Proof. Following the proof of Lemma 5.1, and the maximum modulus
principle we have

|RN(z)|
|8(z)|k �&RN&�0 , z # 0.

This gives (5.7), if we pass to the limit as z � �. Similarly, by passing to
the limit with z � al in

|RN(z)| } |,l (z)|ml�&RN&�Gl , z # Gl ,

we obtain (5.8). K

Corollary 5.4. Let K and [RN]i # 4 be the same as in Lemma 5.2.
Then

lim sup
i � �

|tN
k | 1�k�

1
C

(5.9)

and

lim sup
i � �

|sN
l, ml

| 1�ml�Rl , l=1, ..., n. (5.10)

Proof. Inequalities (5.9) and (5.10) follow immediately from (5.3), (5.4),
(5.7) and (5.8). K

Lemma 5.5. With the assumptions of Theorem 2.2, the monic polynomial
PN(z), in (2.7), is asymptotically extremal on K with respect to the weight
w(z) defined by (4.12), i.e.

lim
i # 4

i � �
&w |N|PN&1�|N|

K =e&Fw, (5.11)

where Fw is given by (4.16).
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Proof. Since K is a continuum and al � K, l=1, ..., n, there exist two
constants d1 and d2 such that

d1�|z&al |�d2 , \z # K, l=1, ..., n.

Consider

lim sup
i � �

&w |N|PN&1�|N|

=lim sup
i � � "\`

n

l=1

|z&al |
&:l+

|N|

PN(z)"
1�|N|

K

=lim sup
i � � "\`

n

l=1

|z&al |
&:l+

|N| >n
l=1 (z&al)

ml

tN
k

RN(z)"
1�|N|

K

�lim sup
i � � _ 1

|tN
k | 1�|N| "`

n

l=1

(z&al)
(ml�|N| )&:l"K

} &RN&1�|N|
K &

=C1&�n
l=1 :l=e&Fw.

(For the above we made use of Theorem 2.2(i), (2.9), (5.3) and (5.4) in
order to deduce that

lim
i # 4

i � � "`
n

l=1

(z&al)
(ml �|N| )&:l"K

=1,

lim
i # 4

i � �
&RN&1�|N|

K =1,

and

lim
i # 4

i � �

1
|tN

k | 1�|N|=C1&� n
l=1 :l.+

By Corollary 4.5 of [12] and Corollary 4.3 we have

lim inf
i � �

&w |N|PN&1�|N|
K �e&Fw, (5.12)

from which the lemma follows immediately. K

Lemma 5.6. Let &N be the measure defined by (2.8). Then, with the
assumptions of Theorem 2.2 we have that

&N(B) � 0, as i � �, i # 4, (5.13)

for any closed subset B/(�n
l=1 Gl) _ 0.
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Proof. If B/0, then Lemma 5.6 is implied by Lemma 5.5 and
Theorem 2.3(a) of [11]. In case of B/Gl , 1�l�n, the proof of this
lemma is similar to the proof of Lemma 4.1 of [11] or can be directly
reduced to it by the transformation u=1�(z&al). K

5.2. Proofs of Theorems 2.2, 2.3, and 2.6

Proof of Theorem 2.2. Let _ be any weak* limit of &N , i.e. &N *� _ for
some subsequence 4$/4. By the locally uniform convergence of
[RN(z)]i # 4 to f (z)�0 we obtain from the Hurwitz theorem that

_(B)=0 (5.14)

for any closed set B/K%. Then, Lemma 5.6 and (5.14) imply that
supp _/�K. Clearly, _ # M(K). We know from Corollary 4.3 that
supp +w=�K. By the property (d) of Theorem 4.1 and (5.11) we obtain

| log |z&t| d&N(t)&| log |z&t| d+w(t)�=N (5.15)

uniformly on �K, where =N � 0 as i � �, i # 4. Using the principle of
domination (Theorem II.3.2 in [15] and Second Maximum Principle in
[10], p. 111) we conclude that (5.15) holds for all z # C.

If we let $>0 and consider &~ N , the normalized counting measure in
zeros of PN(z) that are closer than $ to �K, then by (5.15)

| log |z&t| d&~ N(t)&| log |z&t| d+w(t)�=N+o(1)

for every z such that dist(z, �K)>$. But &~ N *� _, as i � �, i # 4$, there-
fore we have for every z � �K

&| log
1

|z&t|
d_(t)+| log

1
|z&t|

d+w(t)�0. (5.16)

The function u(z) :=U +w(z)&U_(z) is harmonic in C� "�K. If we show that
u(z) has a zero in some component of C� "�K, then u(z) vanishes identically
there by (5.16) and the maximum principle [19].

First, we consider 0, which is the unbounded component of C� "�K. It is
not difficult to see that

lim
z � �

u(z)= lim
z � � | log

1
|z&t|

d(+w&_)(t)=0=u(�).
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Consequently,

u(z)#0 in 0. (5.17)

Using the assumption that the sequence [RN(z)]i # 4 converges locally
uniformly to f (z)�0, we can choose a point z0 # K% such that

lim
i # 4

i � �
RN(z0)= f (z0){0.

This implies the existence of some neighborhood of z0 that doesn't contain
zeros of RN(z) by the Hurwitz theorem, for i # 4 large enough. Thus, we
have by the weak* convergence

U_(z0)= lim
i # 4$
i � �

U &N(z0)

= lim
i # 4$
i � �

1
|N|

log
1

|PN(z0)|

= lim
i # 4$
i � �

log
|tN

k | 1�|N| >n
l=1 |z0&al |

&ml�|N|

|RN(z0)| 1�|N|

= lim
i # 4$
i � � \ k

|N|
log |tN

k | 1�k+ :
n

l=1

ml

|N|
log

1
|z0&al |+

=\1& :
n

l=1

:l+ log
1
C

+ :
n

l=1

:l log
1

|z0&al |
. (5.18)

For the potential of the weighted equilibrium distribution we obtain

U+w(z0)=\1& :
n

l=1

:l+ | log
1

|z0&t|
d+e(t)+ :

n

l=1

:l | log
1

|z0&t|
d+l (t)

=\1& :
n

l=1

:l+ log
1
C

+ :
n

l=1

:l log
1

|z0&al |
. (5.19)

Comparing (5.18) and (5.19) we conclude that

U+w(z)=U_(z), \z # K%. (5.20)

Since both potentials are continuous in the fine topology (see Section V.3
of [10]) and the boundary of 0 in the fine topology is the same as the
Euclidean boundary [15], then we obtain by (5.17) that U+w(z)=U_(z),
\z # �0. Thus, we have

U+w(z)=U_(z), \z # C"G� , (5.21)
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where G=�n
l=1 Gl . By the unicity theorem [15] we get

_ | �0=+w | �0 .

Now, we apply the fine topology argument to the domain C� "G� to conclude
that

U+w(z)=U_(z) on �(C� "G� )= .
n

l=1

�Gl .

Since U+w(z) and U_(z) coincide on �K, which contains the supports of
both measures, we obtain

U+w(z)=U_(z), \z # C,

by the maximum principle for harmonic functions. Another application of
the unicity theorem yields

_#+w .

Let us turn to the proof of the converse part in Theorem 2.2. We have
that &N *� _ as i � �, i # 4, where _=+w . This implies

U_(z)=U+w(z), \z # C. (5.22)

By the same argument as in (5.18) we get for z0 # K% such that f (z0){0,

U+w(z0)=\1& :
n

l=1

:l+ log lim
i # 4

i � �
|tN

k | 1�k+ :
n

l=1

:l log
1

|z0&al |
.

The last equality and (5.19) immediately gives condition (i) of
Theorem 2.2.

In order to prove (ii) we use the assumption that every al # Gl has some
zero free neighborhood, so that by the weak* convergence

U+w(al)

= lim
i # 4

i � �

1
|N|

log
1

|PN(al)|
= lim

i # 4
i � �

1
|N|

log } tN
k

sN
l, ml

>j{l |al&aj |
mj}

= lim
i # 4

i � � \ k
|N|

log |tN
k | 1�k+

ml

|N|
log

1
|sN

l, ml
| 1�ml

+log `
j{l

|al&aj |
&(mj �|N| )+

=\1& :
n

j=1

:j+ log
1
C

+:l log
1

limml � � |sN
l, ml

| 1�ml

+ :
j{l

:j log
1

|al&aj |
. (5.23)
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We observe that the function g(t)=(,l (t)&,l (al))�(t&al) is analytic in Gl

and continuous on Gl. Also, g(t){0, \t # G� l . This implies that log | g(t)| is
harmonic in Gl and continuous on Gl with

log | g(al)|=log |,$(al)|=log
1
Rl

.

Now we calculate

U+w(al)=\1& :
n

j=1

:j+ log
1
C

+ :
n

j=1

:j | log
1

|z&al |
d+j (z)

=\1& :
n

j=1

:j+ log
1
C

+ :
j{l

:j log
1

|aj&al |

+:l | log },l (z)&,l (al)
z&al } d+l (z)

=\1& :
n

j=1

:j+ log
1
C

+ :
j{l

:j log
1

|aj&al |

+:l log |,$l (al)|. (5.24)

By (5.22) condition (ii) of Theorem 2.2 now follows from (5.23) and (5.24),
l=1, ..., n. K

Proof of Theorem 2.3. The proofs of (2.17) and (2.18) are the same as
in the proof of Theorem 2.2 so we need only to present the proof of (2.19).
By (2.17) and (2.18) we have

U& |G� (z)=U +w |G� (z), \z � G� . (5.25)

Let _ be a weak* limit of the balayages of &N |G� to �G. Then, by the lower
envelope theorem [15] we have

lim inf
i # 4$
i � �

U &N |G�@(z)=U_(z) (5.26)

and

lim inf
i # 4$
i � �

U&N |G� (z)=U& |G� (z), (5.27)

where both equalities hold q.e. in C"G� for a subsequence 4$/4. Since

U &N |G�@(z)=U&N |G� (z), \z # C"G� ,
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by the definition of balayage, we obtain from (5.26) and (5.27)

U_(z)=U& |G� (z) q.e. in C"G� .

The last equality together with (5.25) yields

U_(z)=U+w |G� (z) q.e. in C"G� .

But supp _/�G and supp +w |G� /�G, therefore both potentials are con-
tinuous in C"G� and

U_(z)=U+w |G� (z), \z # C"G� .

Consequently, the measures must be identical by the Carleson unicity
theorem (see [3] and [15]):

_=+w | G� . (5.28)

Thus, by (2.18) and (5.28) we have

&̂N *� & | C"G� +_=+w | C"G� ++w |G� =+w ,

as i � �, i # 4. K

Proof of Theorem 2.6. This proof follows that of Theorem 2.2 and
therefore is omitted.

5.3. Proof of Theorem 3.2

First, we show that pm, n(z) converges to some analytic function g locally
uniformly in An , with g�0. To this end we recall that by the additive
splitting (3.8) the function f +(z) must have a meromorphic continuation
with precisely n poles in [z : R�|z|<Rn] because f &(z) is analytic in
[z : |z|>r]. Similarly, f &(z) has a meromorphic continuation with
precisely n poles in [z : rn<|z|<r].

Suppose that [z+
j ]k+

j=1 are the poles of f +(z) with the corresponding
multiplicities [l +

j ]k+

j=1 such that

:
k+

j=1

l +
j =n.

From the classical de Montessus de Ballore's theorem [1] we have

lim
m � �

r+
m, n(z)= f +(z),
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where the convergence is locally uniform in [z : |z|<Rn]"[z+
j ]k+

j=1 , and

lim
m � �

q+
m, n(z)=Q+

n (z), (5.29)

where

Q+
n (z) := `

k+

j=1
\1&

z
z+

j +
l j
+

.

So,

p+
m, n(z) � f +(z) Q+

n (z), as m � �, (5.30)

locally uniformly in [z : |z|<Rn].
Similarly, we have

p&
m, n \1

z+� f &(z) Q&
n \1

z+ , as m � �, (5.31)

locally uniformly in [z : |z|>rn], and

q&
m, n \1

z+� Q&
n \1

z+ := `
k&

j=1
\1&

z&
j

z +
l j
&

, as m � �, (5.32)

locally uniformly in C, where [z&
j ]k&

j=1 are the poles of f &(z) in
[z : rn<|z|�r] with multiplicities [l &

j ]n
j=1 such that

:
k&

j=1

l &
j =n.

Taking into account (5.29), (5.30), (5.31) and (5.32) we obtain from (3.9)

pm, n(z) � ( f +Q+
n Q&

n + f &Q&
n Q+

n )(z), as m � �,

locally uniformly in An . But

g(z) :=( f +Q+
n Q&

n + f &Q&
n Q+

n )(z)

=Q+
n (z) Q&

n (z)( f +(z)+ f &(z))

= f (z) Q+
n (z) Q&

n (z)

for any z # An . Thus,

pm, n(z) � g(z), as m � �, (5.33)
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locally uniformly in An , where g(z) is analytic in An doesn't vanish
identically.

To finish the proof we need to find the m th root behavior for the leading
coefficients of pm, n(z). Applying the result of [4, p. 263] to f +(z) and
p+

m, n(z) we obtain that \41 /N such that

lim
m � �
m # 41

|a+, (mk)
mk, n | 1�mk=

1
Rn

. (5.34)

Then (3.11) follows from (5.33), (5.34) and Theorem 2.3 (cf. (2.18)).
Using the transformation w=1�z we proceed in the same manner for

f &(z) and p&
m, n(z) to deduce that _42 /N such that

lim
m � �
m # 42

|a&, (ml )
ml, n | 1�ml=rn .

Another application of Theorem 2.3 (2.18) yields (3.12). K
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